Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Use coordinate notation to enter the rule that maps each preimage to its image. Then ic
transformation and confirm that it preserves length and angle measure.
A(-5,5) ► A'(5,5)
B(-2,2) B'(2, 2)
C(-3,2) → C'(2,3)
The transformation is a rotation of ?
(x,y) →
° clockwise about the origin given by the rules
6
5


Use Coordinate Notation To Enter The Rule That Maps Each Preimage To Its Image Then Ic Transformation And Confirm That It Preserves Length And Angle Measure A55 class=

Sagot :

Coordinate geometry is the use of a 2D plane to represent points.

  • The transformation is a rotation of 270 degrees clockwise
  • The transformation preserves length because the length of the image and preimage are the same
  • The transformation preserves angles because the angles of the image and preimage are the same

Given that:

[tex]A = (-5,5) \to A' = (5,5)[/tex]

[tex]B = (-2,2) \to B' = (2, 2)[/tex]

[tex]C = (-3,2) \to C' = (2,3)[/tex]

By observing the pattern of transformation, the rule is:

[tex](x,y) \to (y,-x)[/tex]

Hence, the transformation is a rotation of 270 degrees clockwise

The length is calculated using the following distance formula:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2[/tex]

So, we have:

[tex]AB = \sqrt{(-5 - -2)^2 + (5 - 2)^2} =\sqrt{18[/tex]

[tex]BC = \sqrt{(-2 - -3)^2 + (2 - 2)^2} =1[/tex]

[tex]AC = \sqrt{(-5 - -3)^2 + (5 - 2)^2} =\sqrt{13[/tex]

And

[tex]A'B' = \sqrt{(5 -2)^2 + (5 - 2)^2} =\sqrt{18[/tex]

[tex]B'C' = \sqrt{(2 - 2)^2 + (2 - 3)^2} =1[/tex]

[tex]A'C' = \sqrt{(5 - 2)^2 + (5 - 3)^2} =\sqrt{13[/tex]

By comparing the lengths of the image and the preimage, we can conclude that the transformation preserves length.

The measure of the angles is calculated as follows:

[tex]a^2 = b^2 + c^2 -2ab \cos A[/tex]

So, we have:

[tex]18 = 1 + 13 -2 \times 1 \times \sqrt{13} \cos C[/tex]

[tex]18 - 1 - 13= -2 \times 1 \times \sqrt{13} \cos C[/tex]

[tex]4= -2 \times 1 \times \sqrt{13} \cos C[/tex]

[tex]-2= \sqrt{13} \cos C[/tex]

Make cos C the subject

[tex]\cos C = -0.5547[/tex]

[tex]C = cos^{-1}(-0.5547)[/tex]

[tex]C = 124^o[/tex]

Also, we have:

[tex]\frac{a}{\sin A} =\frac{c}{\sin C}[/tex]

So, we have:

[tex]\frac{1}{\sin A} =\frac{\sqrt{18}}{\sin( 124)}[/tex]

[tex]\frac{1}{\sin A} =5.1175[/tex]

Rewrite as:

[tex]\sin A = \frac{1}{5.1175}[/tex]

[tex]\sin A = 0.1954[/tex]

[tex]A = \sin^{-1}(0.1954)[/tex]

[tex]A = 11^o[/tex]

Also, we have:

[tex]A + B + C = 180^o[/tex] --- sum of angles in a triangle

[tex]11 + B + 124 = 180^o[/tex]

Collect like terms

[tex]B = 180 -11 - 124[/tex]

[tex]B = 45[/tex]

Hence:

[tex]\angle A = 11[/tex]   [tex]\angle B = 45[/tex] and [tex]\angle C = 124[/tex]

Read more about coordinate geometry at:

https://brainly.com/question/1601567

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.