Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Explanation:
Recall that
[tex]K = \dfrac{v_0^2\sin2\theta}{g}\:\:\:\:\:\:\:\:\:(1)[/tex]
and
[tex]Q = \dfrac{v_0^2\sin^2\theta}{2g}\:\:\:\:\:\:\:\:\:(2)[/tex]
From Eqn(2), we can write
[tex]\sin\theta = \sqrt{\dfrac{2gQ}{v_0^2}}\:\:\:\:\:\:\:\:\:(3)[/tex]
Using the identity [tex]\sin\theta = 2\sin\theta \cos\theta[/tex], we can rewrite Eqn(1) as
[tex]\dfrac{gK}{2v_0^2} = \sin\theta \cos\theta[/tex]
Squaring the above equation, we get
[tex]\dfrac{g^2K^2}{4v_0^4} = \sin^2\theta \cos^2\theta[/tex]
[tex]\:\:\:\:\:\:\:\:\:=\sin^2\theta(1 - \sin^2\theta)\:\:\:\:\:\:\:(4)[/tex]
Use Eqn(3) on Eqn(4) and we will get the following:
[tex]\dfrac{g^2K^2}{4v_0^4} = \dfrac{2gQ}{v_0^2}(1 - \dfrac{2gQ}{v_0^2})[/tex]
This simplifies to
[tex]\dfrac{gK^2}{8v_0^2Q} = 1 - \dfrac{2gQ}{v_0^2}[/tex]
Rearranging this further, we get
[tex]1 = \dfrac{2gQ}{v_0^2} + \dfrac{gK^2}{8v_0^2Q}[/tex]
Putting [tex]v_0^2[/tex] to the left side, we get
[tex]v_0^2 = 2qQ + \dfrac{gK^2}{8Q}[/tex]
Finally, taking the square root of the equation above, we get the expression for the muzzle velocity [tex]v_0[/tex] as
[tex]v_0 = \sqrt{2gQ + \dfrac{gK^2}{8Q}}[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.