Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
A
Step-by-step explanation:
tan(3x/4)=sin(3x/4)/cos(3x/4)
So the domain of tah(3x/4) is all real numbers except real numbers that make cos(3x/4)=0.
cos(pi/2 +n pi)=0
So we need to solve 3x/4=pi/2+n pi
Multiply both sides by 4/3: x=4/3(pi/2+n pi)
Distribute: x=2pi/3+4n pi/3
Or x=(2pi+4 n pi)/3
Or x=2 pi/3 ×(1+2n)
So odd integer multiples of 2pi/3 is the numbers to be excluded from the domain.
The required domain of the function y = 5/3 tan(3/4x) is (-∞, ∞) - {- 2/3 (2n + 1)π, 2/3 (2n + 1)π}.
What are trigonometric equations?
These are the equation that contains trigonometric operators such as sin, cos.. etc.. In algebraic operation.
y = 5/3 tan(3/4x)
Function tan defined at every x except x = nπ/2 where n = odd number. i.e x = (-∞,∞) - {(2n+1) * π/2, -(2n+1) * π/2}
3/4 * x = (2n + 1 ) * π/2
x = (2n + 1) * 4/3* π/2
x = 2/3 (2n + 1)π
So the required domain for the given function y = 5/36tan(3/4)x is given as,
Domain (x) = (-∞, ∞) - {- 2/3 (2n + 1)π, 2/3 (2n + 1)π}.
Thus, the required domain of the function y = 5/3 tan(3/4x) is (-∞, ∞) - {- 2/3 (2n + 1)π, 2/3 (2n + 1)π}.
Learn more about trigonometry equations here:
brainly.com/question/22624805
#SPJ5
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.