Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
[tex]A = \begin{bmatrix}1&2\\1&1\end{bmatrix} \implies A^{-1} = \dfrac1{\det(A)}\begin{bmatrix}1&-1\\-2&1\end{bmatrix} = \begin{bmatrix}-1&1\\2&-1\end{bmatrix}[/tex]
where det(A) = 1×1 - 2×1 = -1.
[tex]B = \begin{bmatrix}0&-1\\1&2\end{bmatrix} \implies B^{-1} = \dfrac1{\det(B)}\begin{bmatrix}2&1\\-1&0\end{bmatrix} = \begin{bmatrix}2&1\\-1&0\end{bmatrix}[/tex]
where det(B) = 0×2 - (-1)×1 = 1. Then
[tex]B^{-1}A^{-1} = \begin{bmatrix}2&1\\-1&0\end{bmatrix} \begin{bmatrix}-1&1\\2&-1\end{bmatrix} = \begin{bmatrix}-1&3\\1&-2\end{bmatrix}[/tex]
On the other side, we have
[tex]AB = \begin{bmatrix}1&2\\1&1\end{bmatrix} \begin{bmatrix}0&-1\\1&2\end{bmatrix} = \begin{bmatrix}2&3\\1&1\end{bmatrix}[/tex]
and det(AB) = det(A) det(B) = (-1)×1 = -1. So
[tex](AB)^{-1} = \dfrac1{\det(AB)}\begin{bmatrix}1&-3\\-1&2\end{bmatrix} = \begin{bmatrix}-1&3\\1&-2\end{bmatrix}[/tex]
and both matrices are clearly the same.
More generally, we have by definition of inverse,
[tex](AB)(AB)^{-1} = I[/tex]
where [tex]I[/tex] is the identity matrix. Multiply on the left by A ⁻¹ to get
[tex]A^{-1}(AB)(AB)^{-1} = A^{-1}I = A^{-1}[/tex]
Multiplication of matrices is associative, so we can regroup terms as
[tex](A^{-1}A)B(AB)^{-1} = A^{-1} \\\\ B(AB)^{-1} = A^{-1}[/tex]
Now multiply again on the left by B ⁻¹ and do the same thing:
[tex]B^{-1}\left(B(AB)^{-1}\right) = (B^{-1}B)(AB)^{-1} = B^{-1}A^{-1} \\\\ (AB)^{-1} = B^{-1}A^{-1}[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.