Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
[tex] \rm \displaystyle y' = 2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} [/tex]
Step-by-step explanation:
we would like to figure out the differential coefficient of [tex]e^{2x}(1+\ln(x))[/tex]
remember that,
the differential coefficient of a function y is what is now called its derivative y', therefore let,
[tex] \displaystyle y = {e}^{2x} \cdot (1 + \ln(x) )[/tex]
to do so distribute:
[tex] \displaystyle y = {e}^{2x} + \ln(x) \cdot {e}^{2x} [/tex]
take derivative in both sides which yields:
[tex] \displaystyle y' = \frac{d}{dx} ( {e}^{2x} + \ln(x) \cdot {e}^{2x} )[/tex]
by sum derivation rule we acquire:
[tex] \rm \displaystyle y' = \frac{d}{dx} {e}^{2x} + \frac{d}{dx} \ln(x) \cdot {e}^{2x} [/tex]
Part-A: differentiating $e^{2x}$
[tex] \displaystyle \frac{d}{dx} {e}^{2x} [/tex]
the rule of composite function derivation is given by:
[tex] \rm\displaystyle \frac{d}{dx} f(g(x)) = \frac{d}{dg} f(g(x)) \times \frac{d}{dx} g(x)[/tex]
so let g(x) [2x] be u and transform it:
[tex] \displaystyle \frac{d}{du} {e}^{u} \cdot \frac{d}{dx} 2x[/tex]
differentiate:
[tex] \displaystyle {e}^{u} \cdot 2[/tex]
substitute back:
[tex] \displaystyle \boxed{2{e}^{2x} }[/tex]
Part-B: differentiating ln(x)•e^2x
Product rule of differentiating is given by:
[tex] \displaystyle \frac{d}{dx} f(x) \cdot g(x) = f'(x)g(x) + f(x)g'(x)[/tex]
let
- [tex]f(x) \implies \ln(x) [/tex]
- [tex]g(x) \implies {e}^{2x} [/tex]
substitute
[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \frac{d}{dx}( \ln(x) ) {e}^{2x} + \ln(x) \frac{d}{dx} {e}^{2x} [/tex]
differentiate:
[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \boxed{\frac{1}{x} {e}^{2x} + 2\ln(x) {e}^{2x} }[/tex]
Final part:
substitute what we got:
[tex] \rm \displaystyle y' = \boxed{2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} }[/tex]
and we're done!
Answer:
Product Rule for Differentiation
[tex]\textsf{If }y=uv[/tex]
[tex]\dfrac{dy}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}[/tex]
Given equation:
[tex]y=e^{2x}(1+\ln x)[/tex]
Define the variables:
[tex]\textsf{Let }u=e^{2x} \implies \dfrac{du}{dx}=2e^{2x}[/tex]
[tex]\textsf{Let }v=1+\ln x \implies \dfrac{dv}{dx}=\dfrac{1}{x}[/tex]
Therefore:
[tex]\begin{aligned}\dfrac{dy}{dx} & =u\dfrac{dv}{dx}+v\dfrac{du}{dx}\\\\\implies \dfrac{dy}{dx} & =e^{2x} \cdot \dfrac{1}{x}+(1+\ln x) \cdot 2e^{2x}\\\\& = \dfrac{e^{2x}}{x}+2e^{2x}(1+\ln x)\\\\ & = \dfrac{e^{2x}}{x}+2e^{2x}+2e^{2x} \ln x\\\\& = e^{2x}\left(\dfrac{1}{x}+2+2 \ln x \right)\end{aligned}[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.