Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
If you draw the bounded region in the x,y-plane, you'll find it to be somewhat ambiguous, but since y = 0 cuts the area between the parabola x = y ² and x = 4 perfectly in half, you can use either the top or bottom half. I'll use the top one, i.e. assume y ≥ 0.
For every x taken from the interval [0, 4], we can get a shell with height √x. The distance from x to the axis of revolution, x = 5, is 5 - x, which corresponds to the radius of the shell. The area of this shell is
2π (radius) (height) = 2π (5 - x) √x
Then the volume of the solid is the sum of infinitely many such shells made at every 0 ≤ x ≤ 4, given by the integral
[tex]\displaystyle 2\pi \int_0^4 (5-x)\sqrt x\,\mathrm dx = 2\pi \int_0^4 \left(5x^{1/2}-x^{3/2}\right)\,\mathrm dx \\\\ = 2\pi \left(\frac{10}3x^{3/2}-\frac25x^{5/2}\right)\bigg|_0^4 \\\\ = \boxed{\frac{416\pi}{15}}[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.