Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

prove that root 3 + root 7 is irrational


Sagot :

Answer:

√3+√7 is irrational.

Step-by-step explanation:

Let us assume that √3+√7 is rational.

That is , we can find coprimes a and b (b≠0) such that \sqrt{3}+\sqrt{7}=\sqrt{a}{b}

3

+

7

=

a

b

Therefore,

\sqrt{7}=\frac{a}{b}-\sqrt{3}

7

=

b

a

3

Squaring on both sides ,we get

7=\frac{a^{2}}{b^{2}}+3-2\times \frac{a}{b}\times \sqrt{3}7=

b

2

a

2

+3−2×

b

a

×

3

Rearranging the terms ,

\begin{gathered}2\times \frac{a}{b}\times \sqrt{3}=\frac{a^{2}}{b^{2}}+3-7\\=\frac{a^{2}}{b^{2}}-4\end{gathered}

b

a

×

3

=

b

2

a

2

+3−7

=

b

2

a

2

−4

\implies 2\times \frac{a}{b}\times \sqrt{3}=\frac{a^{2}-4b^{2}}{b^{2}}⟹2×

b

a

×

3

=

b

2

a

2

−4b

2

\begin{gathered}\implies \sqrt{3}=\frac{a^{2}-4b^{2}}{b^{2}}\times \frac{b}{2a}\\=\frac{a^{2}-4b^{2}}{2ab}\end{gathered}

3

=

b

2

a

2

−4b

2

×

2a

b

=

2ab

a

2

−4b

2

Since, a and b are integers , \frac{(a^{2}-4b^{2})}{2ab}

2ab

(a

2

−4b

2

)

is rational ,and so √3 also rational.

But this contradicts the fact that √3 is irrational.

This contradiction has arisen because of our incorrect assumption that √3+√7 is rational.

Hence, √3+√7 is irrational.