At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
For the first equation, recall that sin²(θ) = (1 - cos(2θ))/2. Then
2 sin²(θ) = 2 + cos(2θ)
1 - cos(2θ) = 2 + cos(2θ)
2 cos(2θ) = -1
cos(2θ) = -1/2
2θ = arccos(-1/2) + 2nπ or 2θ = 2π - arccos(-1/2) + 2nπ
(where n is any integer)
2θ = 2π/3 + 2nπ or 2θ = 4π/3 + 2nπ
θ = π/3 + nπ or θ = 2π/3 + nπ
In the interval [0, 2π), the solutions are θ = π/3, 2π/3, 4π/3, 5π/3.
For the second equation, rearrange the previous identity to arrive at
cos(2θ) = 1 - 2 sin²(θ) = 2 cos²(θ) - 1
Then
cos(2θ) + 7 cos(θ) = 8
2 cos²(θ) - 1 + 7 cos(θ) = 8
2 cos²(θ) + 7 cos(θ) - 9 = 0
(2 cos(θ) + 9) (cos(θ) - 1) = 0
2 cos(θ) + 9 = 0 or cos(θ) - 1 = 0
cos(θ) = -9/2 or cos(θ) = 1
Since |-9/2| > 1, and cos(θ) is bounded between -1 and 1, the first case offers no solutions. This leaves us with
cos(θ) = 1
θ = arccos(1) + 2nπ
θ = 2nπ
so that there is only one solution in [0, 2π), θ = 0.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.