Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
We are given the function:
[tex]f(x)=2x^2-x-10[/tex]
[tex]Here,\\a=2, b=-1,c=-10[/tex]
1. X-intercepts are the points at which the graph of a function intersects or cuts the x-axis. Since the x-intercept always lies on the x-axis, its ordinate or y-coordinate will always be 0. Since the function is quadratic, it will have at most 2 x-intercepts.
In order to find the x intercept, we basically solve for x at y=0:
[tex]f(x)=2x^2-x-10\\As\ y=0,\\0=2x^2-x-10\\2x^2-x-10=0\\ 2x^2-5x+4x-10=0\\x(2x-5)+2(2x-5)=0\\(x+2)(2x-5)=0\\Hence,\\Individually:\\x=-2,\ x=\frac{5}{2}[/tex]
Hence, the x-intercepts of the parabola of f(x) is (-2,0),(2.5,0)
2. The vertex of parabola is determined as maximum or minimum, solely on how it opens. This depends on the nature of the co-efficient of the x^2 term or 'a'. If a is positive the parabola opens upwards (minimum point) and downwards (maximum point) if negative. Hence, here as a=2, the parabola opens upwards and its vertex is minimum.
[tex]Vertex=(\frac{-b}{2a},\frac{-D}{4a})\\Hence,\\D=b^2-4ac\\Substituting\ a=2,b=-1,c=-10:\\D=(-1)^2-4*2*-10=1+80=81\\Hence,\\Vertex\ of\ f(x)=(\frac{-(-1)}{2*2},\frac{-81}{4*2})=(\frac{1}{4},\frac{-81}{8})[/tex]
3. [Please refer to the attachment]
From the graph, we observe that the parabola cuts the x-axis at (-2,0),(2.5,0). Also, its clear that the axis of symmetry passes through [tex](\frac{1}{4},\frac{-81}{8})[/tex], which is its minimum point.

Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.