Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

find x. A. 21√2 B. 7 C. 21√3 over 2 D. 21√2 over 2

Find X A 212 B 7 C 213 Over 2 D 212 Over 2 class=

Sagot :

Answer:

D

Step-by-step explanation:

for you to find x you first have to find the adjacent of the 45° angle you can do that by using the other triangle.using the sin ratio

sin60=opposite/hypotenuse

sin60=a/73

a=10.5

then after you have found the adjacent you can use the cos ratio

cos45=adjacent/hypotenuse

cos45=10.5/x

cos45x/cos45=10.5/cos45

x=14.849

which is the same as 212 over 2

I hope this helps

Answer:

D

Step-by-step explanation:

Using sine ratio in left right angled triangle to find the altitude a of the large triangle which is common to both right triangles and the exact value

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{a}{7\sqrt{3} }[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2a = 21 ( divide both sides by 2 )

a = [tex]\frac{21}{2}[/tex]

Using the cosine ratio in the right side triangle and the exact value

cos45° = [tex]\frac{1}{\sqrt{2} }[/tex] , then

cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{a}{x}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )

x = [tex]\sqrt{2}[/tex] a = [tex]\sqrt{2}[/tex] × [tex]\frac{21}{2}[/tex] = [tex]\frac{21\sqrt{2} }{2}[/tex] → D

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.