Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
It looks like the integral you want to find is
[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy[/tex]
where C is the circle x ² + y ² = 4. By Green's theorem, the line integral is equivalent to a double integral over the disk x ² + y ² ≤ 4, namely
[tex]\displaystyle \iint\limits_{x^2+y^2\le4}\frac{\partial(-xy^2)}{\partial x}-\frac{\partial(x^2y)}{\partial y}\,\mathrm dx\,\mathrm dy = -\iint\limits_{x^2+y^2\le4}(x^2+y^2)\,\mathrm dx\,\mathrm dy[/tex]
To compute the remaining integral, convert to polar coordinates. We take
x = r cos(t )
y = r sin(t )
x ² + y ² = r ²
dx dy = r dr dt
Then
[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy = -\int_0^{2\pi}\int_0^2 r^3\,\mathrm dr\,\mathrm dt \\\\ = -2\pi\int_0^2 r^3\,\mathrm dr \\\\ = -\frac\pi2 r^4\bigg|_{r=0}^{r=2} \\\\ = \boxed{-8\pi}[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.