Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
[tex]-\frac{77}{24}[/tex]
Step-by-step explanation:
1. rewrite the equation in standard form: [tex]4\cdot \frac{3}{2}\left(y-\left(-\frac{41}{24}\right)\right)=\left(x-\left(-\frac{3}{2}\right)\right)^2[/tex]
2. find (h,k), the vertex. the vertex is [tex]\left(h,\:k\right)=\left(-\frac{3}{2},\:-\frac{41}{24}\right)[/tex]
3. find the 'focal length' of the parabola - the focal length is the distance between the vertex and the focus. from the vertex we can see that the focal length, p, = 3/2
4. Parabola is symmetric around the y-axis and so the asymptote is a line parallel to the x-axis, a distance p from the [tex]\left(-\frac{3}{2},\:-\frac{41}{24}\right)[/tex] y coordinate which is at [tex]-\frac{41}{24}\right)[/tex]. Set up the equation:
[tex]y=-\frac{41}{24}-p[/tex]
5. substitute and solve:
[tex]y=-\frac{41}{24}-\frac{3}{2}[/tex]
[tex]y = -\frac{77}{24}[/tex]
hope this helps, ask me questions if you still don't understand.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.