Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
[tex]\displaystyle \frac{\tan\theta}{\sec\theta - \cos\theta} = \frac{1}{\sin\theta} = \csc\theta[/tex]
Step-by-step explanation:
We have the expression:
[tex]\displaystyle \frac{\tan\theta}{\sec\theta - \cos\theta}[/tex]
And we want to write the expression in terms of sine and cosine and simplify.
Thus, let tanθ = sinθ / cosθ and secθ = 1 / cosθ. Substitute:
[tex]=\displaystyle \frac{\dfrac{\sin\theta}{\cos\theta}}{\dfrac{1}{\cos\theta}-\cos\theta}[/tex]
Multiply both layers by cosθ:
[tex]=\displaystyle \frac{\left(\dfrac{\sin\theta}{\cos\theta}\right)\cdot \cos\theta}{\left(\dfrac{1}{\cos\theta}-\cos\theta\right)\cdot \cos\theta}[/tex]
Distribute:
[tex]\displaystyle =\frac{\sin\theta}{1-\cos^2\theta}[/tex]
Recall from the Pythagorean Theorem that sin²θ + cos²θ = 1. Hence, 1 - cos²θ = sin²θ. Substitute and simplify:
[tex]\displaystyle =\frac{\sin\theta}{\sin^2\theta} \\ \\ =\frac{1}{\sin\theta}[/tex]
We can convert this to cosecant if we wish.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.