Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Suppose y varies inversely with X, and y = 36 when x = 1/12. What inverse variation equation relates x and y?
NO LINKS OR ANSWERING YOU DON'T KNOW!!!

a. y= 3x
b. y= 3/x
c. x/3
d. y= x​


Sagot :

Answer:

B

Step-by-step explanation:

We are given that y varies inversely with x. Recall that inverse variation has the form:

[tex]\displaystyle y=\frac{k}{x}[/tex]

Where k is the constant of variation.

We are given that y = 36 when x = 1/12. Thus:

[tex]\displaystyle (36)=\frac{k}{\left({}^{1}\!/\!{}_{12}\right)}[/tex]

Solve for k. Multiply both sides by 1/12:

[tex]\displaystyle k=\frac{1}{12}(36)=3[/tex]

Hence, our equation is:

[tex]\displaystyle y=\frac{3}{x}[/tex]

Our answer is B.

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.