At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
"down/up the plane" suggests an inclined plane, but no angle is given so I'll call it θ for the time being.
The free body diagram for the crate in either scenario is the same, except for the direction in which static friction is exerted on the crate. With the P = 100 N force holding up the crate, static friction points up the incline and keeps the crate from sliding downward. When P = 350 N, the crate is pushed upward, so static friction points down. (see attached FBDs)
Using Newton's second law, we set up the following equations.
• p = 100 N
∑ F (parallel) = f + p cos(θ) - mg sin(θ) = 0
∑ F (perpendicular) = n - p sin(θ) - mg cos(θ) = 0
• P = 350 N
∑ F (parallel) = P cos(θ) - F - mg sin(θ) = 0
∑ F (perpendicular) = N - P sin(θ) - mg cos(θ) = 0
(where n and N are the magnitudes of the normal force in the respective scenarios; ditto for f and F which denote static friction, so that f = µn and F = µN, with µ = coefficient of static friction)
Solve for n and N :
n = p sin(θ) + mg cos(θ)
N = P sin(θ) - mg cos(θ)
Substitute these into the corresponding equations containing µ, and solve for µ :
µ = (mg sin(θ) - p cos(θ)) / (mg cos(θ) + p sin(θ))
µ = (P cos(θ) - mg sin(θ)) / (P sin(θ) + mg cos(θ))
Next, you would set these equal and solve for m :
(mg sin(θ) - p cos(θ)) / (mg cos(θ) + p sin(θ)) = (P cos(θ) - mg sin(θ)) / (P sin(θ) + mg cos(θ))
...
Once you find m, you back-substitute and solve for µ, but as you might expect the result will be pretty complicated. If you take a simple angle like θ = 30°, you would end up with
m ≈ 36.5 kg
µ ≈ 0.256

Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.