Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Recall that variation of parameters is used to solve second-order ODEs of the form
y''(t) + p(t) y'(t) + q(t) y(t) = f(t)
so the first thing you need to do is divide both sides of your equation by t :
y'' + (2t - 1)/t y' - 2/t y = 7t
You're looking for a solution of the form
[tex]y=y_1u_1+y_2u_2[/tex]
where
[tex]u_1(t)=\displaystyle-\int\frac{y_2(t)f(t)}{W(y_1,y_2)}\,\mathrm dt[/tex]
[tex]u_2(t)=\displaystyle\int\frac{y_1(t)f(t)}{W(y_1,y_2)}\,\mathrm dt[/tex]
and W denotes the Wronskian determinant.
Compute the Wronskian:
[tex]W(y_1,y_2) = W\left(2t-1,e^{-2t}\right) = \begin{vmatrix}2t-1&e^{-2t}\\2&-2e^{-2t}\end{vmatrix} = -4te^{-2t}[/tex]
Then
[tex]u_1=\displaystyle-\int\frac{7te^{-2t}}{-4te^{-2t}}\,\mathrm dt=\frac74\int\mathrm dt = \frac74t[/tex]
[tex]u_2=\displaystyle\int\frac{7t(2t-1)}{-4te^{-2t}}\,\mathrm dt=-\frac74\int(2t-1)e^{2t}\,\mathrm dt=-\frac74(t-1)e^{2t}[/tex]
The general solution to the ODE is
[tex]y = C_1(2t-1) + C_2e^{-2t} + \dfrac74t(2t-1) - \dfrac74(t-1)e^{2t}e^{-2t}[/tex]
which simplifies somewhat to
[tex]\boxed{y = C_1(2t-1) + C_2e^{-2t} + \dfrac74(2t^2-2t+1)}[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.