Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given:
The focus of the parabola is at (6,-4).
Directrix at y=-7.
To find:
The equation of the parabola.
Solution:
The general equation of a parabola is:
[tex]y=\dfrac{1}{4p}(x-h)^2+k[/tex] ...(i)
Where, (h,k) is vertex, (h,k+p) is the focus and y=k-p is the directrix.
The focus of the parabola is at (6,-4).
[tex](h,k+p)=(6,-4)[/tex]
On comparing both sides, we get
[tex]h=6[/tex]
[tex]k+p=-4[/tex] ...(ii)
Directrix at y=-7. So,
[tex]k-p=-7[/tex] ...(iii)
Adding (ii) and (iii), we get
[tex]2k=-11[/tex]
[tex]k=\dfrac{-11}{2}[/tex]
[tex]k=-5.5[/tex]
Putting [tex]k=-5.5[/tex] in (ii), we get
[tex]-5.5+p=-4[/tex]
[tex]p=-4+5.5[/tex]
[tex]p=1.5[/tex]
Putting [tex]h=6, k=-5.5,p=1.5[/tex] in (i), we get
[tex]y=\dfrac{1}{4(1.5)}(x-6)^2+(-5.5)[/tex]
[tex]y=\dfrac{1}{6}(x-6)^2-5.5[/tex]
Therefore, the equation of the parabola is [tex]y=\dfrac{1}{6}(x-6)^2-5.5[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.