Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the points on the given curve where the tangent line is horizontal or vertical. (Assume 0 ≤ θ ≤ 2π. Enter your answers as a comma-separated list of ordered pairs.) r = 1 − sin(θ) horizontal tangent

Sagot :

The tangent to the curve at a point P (x, y) has slope dy/dx at that point. By the chain rule,

dy/dx = (dy/dθ) / (dx/dθ)

We're in polar coordinates, so

y (θ) = r (θ) sin(θ)   ==>   dy/dθ = dr/dθ sin(θ) + r (θ) cos(θ)

x (θ) = r (θ) cos(θ)   ==>   dx/dθ = dr/dθ cos(θ) - r (θ) sin(θ)

We're given r (θ) = 1 - sin(θ), so that

dr/dθ = -cos(θ)

Then the slope of the tangent to the curve at P is

dy/dx = (dr/dθ sin(θ) + r (θ) cos(θ)) / (dr/dθ cos(θ) - r (θ) sin(θ))

dy/dx = (-cos(θ) sin(θ) + (1 - sin(θ)) cos(θ)) / (-cos²(θ) - (1 - sin(θ)) sin(θ))

dy/dx = - (cos(θ) - sin(2θ)) / (sin(θ) + cos(2θ))

The tangent is horizontal if dy/dx = 0 (or when the numerator vanishes):

cos(θ) - sin(2θ) = 0

cos(θ) - 2 sin(θ) cos(θ) = 0

cos(θ) (1 - 2 sin(θ)) = 0

cos(θ) = 0   or   1 - 2 sin(θ) = 0

cos(θ) = 0   or   sin(θ) = 1/2

[θ = π/2 + 2   or   θ = 3π/2 + 2]   or   [θ = π/6 + 2   or   θ = 5π/6 + 2]

where n is any integer.

In the interval 0 ≤ θ ≤ 2π, we get solutions of θ = π/6, θ = 5π/6, and θ = 3π/2. (We omit π/2 because the denominator is zero at that point and makes dy/dx undefined.) So the points where the tangent is horizontal are themselves (√3/4, 1/4), (-√3/4, 1/4), and (0, -2), respectively.

The tangent is vertical if 1/(dy/dx) = 0 (or when the denominator vanishes):

sin(θ) + cos(2θ) = 0

sin(θ) + (1 - 2 sin²(θ)) = 0

2 sin²(θ) - sin(θ) - 1 = 0

(2 sin(θ) + 1) (sin(θ) - 1) = 0

2 sin(θ) + 1 = 0   or   sin(θ) - 1 = 0

sin(θ) = -1/2   or   sin(θ) = 1

[θ = 7π/6 + 2   or   θ = 11π/6 + 2]   or   [θ = π/2 + 2]

Then for 0 ≤ θ ≤ 2π, the tangent will be vertical for θ = 7π/6 and θ = 11π/6, which correspond respectively to the points (-3√3/4, -3/4) and (3√3/4, -3/4). (Again, we omit π/2 because this makes dy/dx non-existent.)