Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Imagine that you need to compute e^0.4 but you have no calculator or other aid to enable you to compute it exactly, only paper and pencil. You decide to use a third-degree Taylor polynomial expanded around x = 0. Use the fact that e^0.4 < e < 3 and the Error Bound for Taylor Polynomials to find an upper bound for the error in your approximation.
I error l ≤


Sagot :

Answer:

upper bound for the error, | Error |  ≤ 0.0032

Step-by-step explanation:

Given the data in the question;

[tex]e^{0.4[/tex] < e < 3

Using Taylor's Error bound formula

| Error | ≤ ( m / ( N + 1 )! ) [tex]| x-a |^{N+1[/tex]

where m = [tex]| f^{N+1 }(x) |[/tex]

so we have

| Error |  ≤ ( 3 / ( 3 + 1 )! ) [tex]|[/tex] -0.4 [tex]|[/tex]⁴

| Error |  ≤ ( 3 / 4! ) [tex]|[/tex] -0.4 [tex]|[/tex]⁴

| Error |  ≤ ( 3 / 24 ) [tex]|[/tex] -0.4 [tex]|[/tex]⁴

| Error |  ≤ ( 0.125 ) [tex]|[/tex] -0.0256 [tex]|[/tex]

| Error |  ≤ ( 0.125 ) 0.0256

| Error |  ≤ 0.0032

Therefore, upper bound for the error, | Error |  ≤ 0.0032

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.