Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
Step-by-step explanation:
The given function is:
[tex]f(x) = \dfrac{x}{\sqrt{9+x^2}}[/tex]
Using the binomial series:
[tex]= x(9+x^2)^{-1/2} \\ \\ = x *9^{-1/2}(1+\dfrac{x^2}{9})^{-1/2} \\ \\ = \dfrac{x}{3}(1+ \dfrac{x^2}{9})^{-1/2}[/tex]
[tex]= \dfrac{x}{3} \sum \limits ^{\alpha }_{n=0}(^{-\frac{1}{2}}_n)(\dfrac{x^2}{9})^n[/tex]
[tex]\implies \dfrac{x}{3}\Bigg [ 1 + (-\dfrac{1}{2})*(\dfrac{x^2}{9})+ \dfrac{(-\dfrac{1}{2})(-\dfrac{1}{2}-1)}{2!}(\dfrac{x^2}{9}) ^2 + \dfrac{(-\dfrac{1}{2})(-\dfrac{1}{2}-1) (-\dfrac{1}{2}-2)}{3!} ) (\dfrac{x^2}{9}) ^3+ ... \Bigg ][/tex]
[tex]= \dfrac{x}{3}\Bigg [ 1 - \dfrac{x^2}{18}+ \dfrac{3}{5832}*\dfrac{x^4}{1}-\dfrac{15}{34992}x^6+... \Bigg ][/tex]
[tex]\mathbf{= \dfrac{x}{3}- \dfrac{x^3}{54}+ \dfrac{1}{5832}x^4 - \dfrac{5}{34992}x^7 + ...}[/tex]
To compute the radius of convergence:
[tex]f(x) = \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (1+\dfrac{x^2}{9})^{-1/2}[/tex]
[tex]f(x) = \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (^{-1/2} _n ) (\dfrac{x^2}{9})^n \\ \\ \implies \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (^{-1/2} _n ) (\dfrac{x^2}{9})^n \\ \\ \implies \sum \limits ^{\alpha}_{n=0} (^{-1/2} _n ) \dfrac{1}{3*9^n}*x^{2n} \\ \\ \implies \sum \limits ^{\alpha}_{n=0} (^{-1/2} _n ) \dfrac{1}{3^{2n+1}}*x^{2n}[/tex]
Suppose [tex]a_n = (^{-1/2}_{n})*\dfrac{1}{3^{2n+1}}*x^{2n}[/tex]
Then, rewriting the equation above as:
[tex]a_{n+1} = (^{-1/2}_{n+1})*\dfrac{1}{3^{2n+3}}*x^{2n+2}[/tex]
As such;
[tex]\lim_{n \to x} \Big| \dfrac{a_n+1}{a_n} \Big| = \lim_{n \to x} \Bigg | \dfrac{ (^{-1/2}_{n+1}) \dfrac{x^{2n+2}}{3^{2n+3}} }{(^{-1/2}_{n} )\dfrac{x^2}{3^{2n+1}}}} \Bigg |[/tex]
[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{ (^{-1/2}_{n+1}) \dfrac{x^{2}}{3^{2}} }{(^{-1/2}_{_n} )} \Bigg |[/tex]
[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{\dfrac{(-1/2)!}{(-1/2-n -1)!(n+1)!}*\dfrac{x^2}{9} }{ \dfrac{(-1/2!)}{(-1/2-n)!(n!)} } \Bigg| \\ \\ \\ \implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n)! (n!) }{(-1/2 -n-1)! (n+1)! } *\dfrac{x^2}{9} \Bigg| \\ \\ \\ \implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n) (-1/2 -n-1)! \ n! }{(-1/2 -n-1)! (n+1) n! } *\dfrac{x^2}{9} \Bigg|[/tex]
[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n)}{n+1 } *\dfrac{x^2}{9} \Bigg|[/tex]
[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{n( -\dfrac{1}{2n -1 } ) }{n(1+\dfrac{1}{n}) } *\dfrac{x^2}{9} \Bigg| \\ \\ \\ \implies \Big| \dfrac{x^2}{9} \Big| \lim_{n \to \alpha} \Big | \dfrac{-\dfrac{1}{2n} -1}{1+ \dfrac{1}{n}} \Big| \\ \\ \implies | \dfrac{x^2}{9}| |\dfrac{0-1}{1}|[/tex]
[tex]\implies | \dfrac{x^2}{9}|[/tex]
However, the series converges if and only if:
[tex]| \dfrac{x^2}{9}| < 1[/tex]
∴
[tex]\dfrac{|x^2|}{9} < 1[/tex]
[tex]={|x^2|}< 9 \\ \\ ={|x|} < \sqrt{9} \\ \\ = \mathbf{{|x|} < 3}[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.