Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
remember the chain rule:
h(x) = f(g(x))
h'(x) = f'(g(x))*g'(x)
or:
dh/dx = (df/dg)*(dg/dx)
we know that:
z = 4*e^x*ln(y)
where:
y = u*sin(v)
x = ln(u*cos(v))
We want to find:
dz/du
because y and x are functions of u, we can write this as:
dz/du = (dz/dx)*(dx/du) + (dz/dy)*(dy/du)
where:
(dz/dx) = 4*e^x*ln(y)
(dz/dy) = 4*e^x*(1/y)
(dx/du) = 1/(u*cos(v))*cos(v) = 1/u
(dy/du) = sin(v)
Replacing all of these we get:
dz/du = (4*e^x*ln(y))*( 1/u) + 4*e^x*(1/y)*sin(v)
= 4*e^x*( ln(y)/u + sin(v)/y)
replacing x and y we get:
dz/du = 4*e^(ln (u cos v))*( ln(u sin v)/u + sin(v)/(u*sin(v))
dz/du = 4*(u*cos(v))*(ln(u*sin(v))/u + 1/u)
Now let's do the same for dz/dv
dz/dv = (dz/dx)*(dx/dv) + (dz/dy)*(dy/dv)
where:
(dz/dx) = 4*e^x*ln(y)
(dz/dy) = 4*e^x*(1/y)
(dx/dv) = 1/(cos(v))*-sin(v) = -tan(v)
(dy/dv) = u*cos(v)
then:
dz/dv = 4*e^x*[ -ln(y)*tan(v) + u*cos(v)/y]
replacing the values of x and y we get:
dz/dv = 4*e^(ln(u*cos(v)))*[ -ln(u*sin(v))*tan(v) + u*cos(v)/(u*sin(v))]
dz/dv = 4*(u*cos(v))*[ -ln(u*sin(v))*tan(v) + 1/tan(v)]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.