At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The probability that the average score of a group of n = 4 people is between 70 and 75=0.13591
Step-by-step explanation:
We are given that
[tex]\mu=65[/tex]
[tex]\sigma=10[/tex]
n=4
We have to find the probability that the average score of a group of n = 4 people is between 70 and 75.
[tex]P(70<\bar{x}<75)=P(\frac{70-65}{\frac{10}{\sqrt{4}}}<\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{75-65}{\frac{10}{\sqrt{4}}})[/tex]
[tex]=P(\frac{5}{5}<Z<\frac{10}{5})[/tex]
[tex]=P(1<Z<2)[/tex]
[tex]=P(Z<2)-P(Z<1)[/tex]
[tex]=0.97725-0.84134[/tex]
[tex]=0.13591[/tex]
Hence, the probability that the average score of a group of n = 4 people is between 70 and 75=0.13591
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.