Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Construct the discrete probability distribution for the random variable described. Express the probabilities as simplified fractions. The number of tails in 5 tosses of a coin.

Sagot :

Answer:

[tex]P(X = 0) = 0.03125[/tex]

[tex]P(X = 1) = 0.15625[/tex]

[tex]P(X = 2) = 0.3125[/tex]

[tex]P(X = 3) = 0.3125[/tex]

[tex]P(X = 4) = 0.15625[/tex]

[tex]P(X = 5) = 0.03125[/tex]

Step-by-step explanation:

For each toss, there are only two possible outcomes. Either it is tails, or it is not. The probability of a toss resulting in tails is independent of any other toss, which means that the binomial probability distribution is used to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Fair coin:

Equally as likely to be heads or tails, so [tex]p = 0.5[/tex]

5 tosses:

This means that [tex]n = 5[/tex]

Probability distribution:

Probability of each outcome, so:

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{5,0}.(0.5)^{0}.(0.5)^{5} = 0.03125[/tex]

[tex]P(X = 1) = C_{5,1}.(0.5)^{1}.(0.5)^{4} = 0.15625[/tex]

[tex]P(X = 2) = C_{5,2}.(0.5)^{2}.(0.5)^{3} = 0.3125[/tex]

[tex]P(X = 3) = C_{5,3}.(0.5)^{3}.(0.5)^{2} = 0.3125[/tex]

[tex]P(X = 4) = C_{5,4}.(0.5)^{4}.(0.5)^{1} = 0.15625[/tex]

[tex]P(X = 5) = C_{5,5}.(0.5)^{5}.(0.5)^{0} = 0.03125[/tex]

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.