Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer: 2
======================================================
Explanation:
To get the 6th term, we multiply the fifth term by the common ratio
6th term = (fifth term)*(common ratio)
6th term = 162*3
6th term = 486
The 7th term is found by tripling 486, and so on.
To get the fourth term, we go in reverse of this process. We'll divide 162 by 3 to get 162/3 = 54
The third term is then going to be 54/3 = 18
The second term is 18/3 = 6
The first term is 6/3 = 2
-----------------------
Here's another way we can solve this question.
The nth term of a geometric sequence is a*(r)^(n-1)
We know that the common ratio is 3, so r = 3.
The 5th term is 162, meaning plugging n = 5 into that expression above leads to 162, so,
a*(r)^(n-1)
a*(3)^(n-1)
a*(3)^(5-1) = 162
a*(3)^4 = 162
a*81 = 162
81a = 162
a = 162/81
a = 2 is the first term
-----------------------
The first five terms of the geometric sequence are:
2, 6, 18, 54, 162
Each time we go from left to right, we're multiplying by 3. Going in reverse (right to left), we divide by 3.
Multiplying by 1/3 is the same as dividing by 3.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.