At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
A sample of 17 must be selected.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.96}{2} = 0.02[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.02 = 0.98[/tex], so Z = 2.054.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
The standard deviation from a previous study is 4 hours.
This means that [tex]\sigma = 4[/tex]
How large a sample must be selected if he wants to be 96% confident of finding whether the true mean differs from the sample mean by 2 hours?
A sample of n is required.
n is found for M = 2. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]2 = 2.054\frac{4}{\sqrt{n}}[/tex]
[tex]2\sqrt{n} = 2.054*4[/tex]
Simplifying both sides by 2:
[tex]\sqrt{n} = 2.054*2[/tex]
[tex](\sqrt{n})^2 = (2.054*2)^2[/tex]
[tex]n = 16.88[/tex]
Rounding up:
A sample of 17 must be selected.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.