Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
The standard deviation is of 8.586.
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they have a genetic mutation, or they do not. The probability of a person having the mutation is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
About 9% of the population has a particular genetic mutation.
This means that [tex]p = 0.09[/tex]
900 people are randomly selected.
This means that [tex]n = 900[/tex]
Find the standard deviation for the number of people with the genetic mutation in such groups of 900.
[tex]\sqrt{V(X)} = \sqrt{900*0.09*0.91} = 8.586[/tex]
The standard deviation is of 8.586.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.