Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

If 19,200 cm2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Sagot :

Step-by-step explanation:

√19200cm²

=138.56cm

then the highest possible volume

=(138.56)³

=2660195.926cm³

The largest possible volume of the box is; V = 25600 cm³

Let us denote the following of the square box;

Length = x

Width = y

height = h

Formula for volume of a box is;

V = length * width * height

Thus; V = xyh

but we are dealing with a square box and as such, the base sides are all equal and so; x = y. Thus;

V = x²h

The box has an open top and as such, the surface are of the box is;

S = x² + 4xh

We are given S = 19200 cm². Thus;

19200 = x² + 4xh

h = (19200 - x²)/4x

Put (19200 - x²)/4x for h in volume equation to get;

V = x²(19200 - x²)/4x

V = 4800x - 0.25x³

To get largest possible volume, it will be dimensions when dV/dx = 0. Thus;

dV/dx = 4800 - 0.75x²

At dV/dx = 0, we have;

4800 - 0.75x² = 0

0.75x² = 4800

x² = 4800/0.75

x² = 6400

x = √6400

x = 80 cm

From h = (19200 - x²)/4x;

h = (19200 - 80²)/(4 × 80)

h = (19200 - 6400)/3200

h = 4 cm

Largest possible volume = 80² × 4

Largest possible volume = 25600 cm³

Read more at; https://brainly.com/question/19053087

We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.