Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Suppose a term of a geometric sequence is a4 = 121.5 and the common ratio is 3. Write the formula for this sequence in the form an = a1 ⋅ rn−1. Explain how you arrived at your answer.

Sagot :

Answer:

[tex]a_n = 4.5 * 3^{n-1}[/tex]

Step-by-step explanation:

Given

[tex]a_4 = 121.5[/tex]

[tex]r = 3[/tex]

Required

[tex]a_n = a_1 * r^{n -1}[/tex]

Substitute 4 for n in [tex]a_n = a_1 * r^{n -1}[/tex]

[tex]a_4 = a_1 * r^{4 -1}[/tex]

[tex]a_4 = a_1 * r^3[/tex]

Substitute 121.5 for [tex]a_4[/tex]

[tex]121.5 = a_1 * 3^3[/tex]

[tex]121.5 = a_1 * 27[/tex]

Solve for a1

[tex]a_1 = \frac{121.5}{27}[/tex]

[tex]a_1 = 4.5[/tex]

So, we have:

[tex]a_n = a_1 * r^{n -1}[/tex]

[tex]a_n = 4.5 * 3^{n-1}[/tex]

Answer:

First I substituted 121.5 for an, 4 for n, and 3 for r in the general form. Then I solved to find a1 = 4.5. Finally, I substituted 4.5 for a1 and 3 for r in the general form to get an = 4.5 ⋅ 3n−1.

Step-by-step explanation:

sample answer on edge ;)

Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.