Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given:
In quadrilateral EFGH, [tex]FG\parallel EH,\angleE\cong \angle H,EF=4n-4,FG=3n+3, GH=2n+6[/tex]
To find:
The length of segment GH.
Solution:
Draw a figure according to the given information as shown below.
In quadrilateral EFGH, [tex]FG\parallel EH,\angleE\cong \angle H[/tex], it means the quadrilateral EFGH is an isosceles quadrilateral because base angles are equal.
Now, quadrilateral EFGH is an isosceles quadrilateral, so the sides EF and GH are equal.
[tex]EF=GH[/tex]
[tex]4n-4=2n+6[/tex]
[tex]4n-2n=4+6[/tex]
[tex]2n=10[/tex]
Divide both sides by 2.
[tex]n=\dfrac{10}{2}[/tex]
[tex]n=5[/tex]
Now,
[tex]GH=2n+6[/tex]
[tex]GH=2(5)+6[/tex]
[tex]GH=10+6[/tex]
[tex]GH=16[/tex]
Therefore, the correct option is C.

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.