Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

In python,
Here's some fake data.
df = {'country': ['US', 'US', 'US', 'US', 'UK', 'UK', 'UK'],
'year': [2008, 2009, 2010, 2011, 2008, 2009, 2010],
'Happiness': [4.64, 4.42, 3.25, 3.08, 3.66, 4.08, 4.09],
'Positive': [0.85, 0.7, 0.54, 0.07, 0.1, 0.92, 0.94],
'Negative': [0.49, 0.09, 0.12, 0.32, 0.43, 0.21, 0.31],
'LogGDP': [8.66, 8.23, 7.29, 8.3, 8.27, 6.38, 6.09],
'Support': [0.24, 0.92, 0.54, 0.55, 0.6, 0.38, 0.63],
'Life': [51.95, 55.54, 52.48, 53.71, 50.18, 49.12, 55.84],
'Freedom': [0.65, 0.44, 0.06, 0.5, 0.52, 0.79, 0.63, ],
'Generosity': [0.07, 0.01, 0.06, 0.28, 0.36, 0.33, 0.26],
'Corruption': [0.97, 0.23, 0.66, 0.12, 0.06, 0.87, 0.53]}
I have a list of happiness and six explanatory vars.
exp_vars = ['Happiness', 'LogGDP', 'Support', 'Life', 'Freedom', 'Generosity', 'Corruption']
1. Define a variable called explanatory_vars that contains the list of the 6 key explanatory variables
2. Define a variable called plot_vars that contains Happiness and each of the explanatory variables. (Hint: recall that you can concatenate Python lists using the addition (+) operator.)
3. Using sns.pairplot, make a pairwise scatterplot for the WHR data frame over the variables of interest, namely the plot_vars. To add additional information, set the hue option to reflect the year of each data point, so that trends over time might become apparent. It will also be useful to include the options dropna=True and palette='Blues'.


Sagot :

Answer:

Here the answer is given as follows,

Explanation:

import seaborn as sns  

import pandas as pd  

df = {'country': ['US', 'US', 'US', 'US', 'UK', 'UK', 'UK'],  

  'year': [2008, 2009, 2010, 2011, 2008, 2009, 2010],  

  'Happiness': [4.64, 4.42, 3.25, 3.08, 3.66, 4.08, 4.09],  

  'Positive': [0.85, 0.7, 0.54, 0.07, 0.1, 0.92, 0.94],  

  'Negative': [0.49, 0.09, 0.12, 0.32, 0.43, 0.21, 0.31],  

  'LogGDP': [8.66, 8.23, 7.29, 8.3, 8.27, 6.38, 6.09],  

  'Support': [0.24, 0.92, 0.54, 0.55, 0.6, 0.38, 0.63],  

  'Life': [51.95, 55.54, 52.48, 53.71, 50.18, 49.12, 55.84],  

  'Freedom': [0.65, 0.44, 0.06, 0.5, 0.52, 0.79, 0.63, ],  

  'Generosity': [0.07, 0.01, 0.06, 0.28, 0.36, 0.33, 0.26],  

  'Corruption': [0.97, 0.23, 0.66, 0.12, 0.06, 0.87, 0.53]}  

dataFrame = pd.DataFrame.from_dict(df)  

explanatory_vars = ['LogGDP', 'Support', 'Life', 'Freedom', 'Generosity', 'Corruption']  

plot_vars = ['Happiness'] + explanatory_vars  

sns.pairplot(dataFrame,  

            x_vars = explanatory_vars,  

            dropna=True,  

            palette="Blues")    

View image tallinn
View image tallinn
View image tallinn
View image tallinn
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.