Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
0.5 = 50% probability that a randomly chosen sample of glass will break at less than 509 MPa
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 509 MPa with a standard deviation of 17 MPa.
This means that [tex]\mu = 509, \sigma = 17[/tex]
What is the probability that a randomly chosen sample of glass will break at less than 509 MPa?
This is the p-value of Z when X = 509. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{509 - 509}{17}[/tex]
[tex]Z = 0[/tex]
[tex]Z = 0[/tex] has a p-value of 0.5
0.5 = 50% probability that a randomly chosen sample of glass will break at less than 509 MPa
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.