Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
0.9452 = 94.52% probability that more than 3 adults in the sample prefer saving over spending
Step-by-step explanation:
For each adult, there are only two possible outcomes. Either they prefer saving over spending, or they do not. The answers for each adult are independent, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
According to a Gallup poll, 60% of American adults prefer saving over spending.
This means that [tex]p = 0.6[/tex]
Sample of 10 American adults
This means that [tex]n = 10[/tex]
What is the probability that more than 3 adults in the sample prefer saving over spending?
This is:
[tex]P(X > 3) = 1 - P(X \leq 3)[/tex]
In which
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{10,0}.(0.6)^{0}.(0.4)^{10} = 0.0001[/tex]
[tex]P(X = 1) = C_{10,1}.(0.6)^{1}.(0.4)^{9} = 0.0016[/tex]
[tex]P(X = 2) = C_{10,2}.(0.6)^{2}.(0.4)^{8} = 0.0106[/tex]
[tex]P(X = 3) = C_{10,3}.(0.6)^{3}.(0.4)^{7} = 0.0425[/tex]
Then
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0001 + 0.0016 + 0.0106 + 0.0425 = 0.0548[/tex]
[tex]P(X > 3) = 1 - P(X \leq 3) = 1 - 0.0548 = 0.9452[/tex]
0.9452 = 94.52% probability that more than 3 adults in the sample prefer saving over spending
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.