At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
Vertex form is f(t) = 4 [tex](t-1)^{2}[/tex] +3 and vertex is (1, 3).
Step-by-step explanation:
It is given that f(t)= 4 [tex]t^{2}[/tex] -8 t+7
Let's use completing square method to rewrite it in vertex form.
Subtract both sides 7
f(t)-7 = 4 [tex]t^{2}[/tex] -8t
Factor the 4 on the right side.
f(t) -7 = 4( [tex]t^{2}[/tex] - 2 t)
Now, let's find the third term using formula [tex](\frac{b}{2} )^{2}[/tex]
Where 'b' is coefficient of 't' term here.
So, b=-2
Find third term using the formula,
[tex](\frac{-2}{2} )^{2}[/tex] which is equal to 1.
So, add 1 within the parentheses. It is same as adding 4 because we have '4' outside the ( ). So, add 4 on the left side of the equation.
So, we get
f(t) -7 +4 = 4( [tex]t^{2}[/tex] -2 t +1)
We can factor the right side as,
f(t) -3 = 4 [tex](t-1)^{2}[/tex]
Add both sides 3.
f(t) = 4[tex](t-1)^{2}[/tex] +3
This is the vertex form.
So, vertex is (1, 3)
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.