Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
The 95% confidence interval for the population proportion of people in New Hampshire with cholesterol levels over 200 is (0.3216, 0.4784).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
You are told that a random sample of 150 people from Manchester New Hampshire have been given cholesterol tests, and 60 of these people had levels over the "safe" count of 200.
This means that [tex]n = 150, \pi = \frac{60}{150} = 0.4[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4 - 1.96\sqrt{\frac{0.4*0.6}{150}} = 0.3216[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4 + 1.96\sqrt{\frac{0.4*0.6}{150}} = 0.4784[/tex]
The 95% confidence interval for the population proportion of people in New Hampshire with cholesterol levels over 200 is (0.3216, 0.4784).
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.