Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
Explanation:
From the given information:
a)
Let's have an imaginary view of the rod located at a given distance r from he the mass (m) of the sphere.
Then the equation for the potential energy as related to the small area of the dr of the rod can be computed as:
[tex]dU = -\dfrac{GMm}{L}*\dfrac{dr}{r}[/tex]
where,
G = gravitational constant
[tex]U = - \int^{x+L}_{x}Gm\dfrac{M}{L}*\dfrac{dr}{r}[/tex]
[tex]U = - \dfrac{GMm}{L}\int^{x+L}_{x}\dfrac{dr}{r}[/tex]
By taking the integral within the limit
[tex]U = - \dfrac{GMm}{L} \Big[In \ r\Big]^{x+L}_{x}[/tex]
[tex]\mathbf{\implies - \dfrac{GmM}{L} In \Big(\dfrac{{x+L}}{{x}}\Big)}[/tex]
b)
By using [tex]F= -\dfrac{dU}{dx}[/tex], the magnitude of the gravitational force can be determined as follows:
Here, we have:
[tex]F = -\dfrac{d}{dx} \Big [\dfrac{-GmM}{L}In(\dfrac{x+l}{x}) \Big ] \\ \\ = \dfrac{GmM}{L}\times \dfrac{x}{x+L}\times (0-\dfrac{L}{x^2}) \\ \\ By \ solving \\ \\ \mathbf{ =-\dfrac{GmM}{x(x+L)}}[/tex]
From above, the negative sign indicates an attractive force
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.