Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The angular velocity of a flywheel obeys the equa tion w(1) A Br2, where t is in seconds and A and B are con stants having numerical values 2.75 (for A) and 1.50 (for B). (a) What are the units of A and B if w, is in rad/s

Sagot :

Answer:

[tex]A \to rad/s[/tex]

[tex]B \to rad/s^3[/tex]

Explanation:

[tex]\omega_z(t)=A + Bt^2[/tex]

Required

The units of A and B

From the question, we understand that:

[tex]\omega_z(t) \to rad/s[/tex]

This implies that each of [tex]A[/tex] and [tex]Bt^2[/tex] will have the same unit as [tex]\omega_z(t)[/tex]

So, we have:

[tex]A \to rad/s[/tex]

[tex]Bt^2 \to rad/s[/tex]

The unit of t is (s); So, the expression becomes

[tex]B * s^2 \to rad/s[/tex]

Divide both sides by [tex]s^2[/tex]

[tex]B \to \frac{rad/s}{s^2}[/tex]

[tex]B \to rad/s^3[/tex]

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.