At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
0.1131 = 11.31% probability that a randomly selected stock will close up $0.75 or more.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a mean of $0.35 and a standard deviation of $0.33.
This means that [tex]\mu = 0.35, \sigma = 0.33[/tex].
What is the probability that a randomly selected stock will close up $0.75 or more?
This is 1 subtracted by the p-value of Z when X = 0.75. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{0.75 - 0.35}{0.33}[/tex]
[tex]Z = 1.21[/tex]
[tex]Z = 1.21[/tex] has a p-value of 0.8869.
1 - 0.8869 = 0.1131
0.1131 = 11.31% probability that a randomly selected stock will close up $0.75 or more.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.