Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
This question is exponential; the basic formula is
(final amount) = (initial amount) * 2^(total hours ÷ time it takes to double)
So if F = final amount and t = time in hours,
[tex]F=500*2^ \frac{t}{2} [/tex]
and for this one,
[tex]F=500*2^ \frac{24}{2} [/tex]
[tex]F=500*2^1^2[/tex]
[tex]F = 2048000 [/tex]
There are 500 bacteria at the beginning and they double every 2 hours. So, if you want to find the number of the bacteria after 2 hours, you must multiply 500 by 2; after 4 hours - multiply 500 by 4; after 6 hours - multiply 500 by 8; etc.
You can write it like this:
[tex]x=500 \times 2^{\frac{t}{2}}[/tex]
where x is the number of the bacteria after t hours
[tex]t=24 \\ \\ x=500 \times 2^\frac{24}{2}=500 \times 2^{12}=500 \times 4096=2048000[/tex]
There will be 2,048,000 bacteria after 24 hours.
You can write it like this:
[tex]x=500 \times 2^{\frac{t}{2}}[/tex]
where x is the number of the bacteria after t hours
[tex]t=24 \\ \\ x=500 \times 2^\frac{24}{2}=500 \times 2^{12}=500 \times 4096=2048000[/tex]
There will be 2,048,000 bacteria after 24 hours.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.