Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Recall that
Var[aX + bY] = a ² Var[X] + 2ab Cov[X, Y] + b ² Var[Y]
Then
Var[3X - 7Y] = 9 Var[X] - 42 Cov[X, Y] + 49 Var[Y]
Now, standard deviation = square root of variance, so
Var[3X - 7Y] = 9×6² - 42×2 + 49×8² = 3376
The general result is easy to prove: by definition,
Var[X] = E[(X - E[X])²] = E[X ²] - E[X]²
Cov[X, Y] = E[(X - E[X]) (Y - E[Y])] = E[XY] - E[X] E[Y]
Then
Var[aX + bY] = E[((aX + bY) - E[aX + bY])²]
… = E[(aX + bY)²] - E[aX + bY]²
… = E[a ² X ² + 2abXY + b ² Y ²] - (a E[X] + b E[Y])²
… = E[a ² X ² + 2abXY + b ² Y ²] - (a ² E[X]² + 2 ab E[X] E[Y] + b ² E[Y]²)
… = a ² E[X ²] + 2ab E[XY] + b ² E[Y ²] - a ² E[X]² - 2 ab E[X] E[Y] - b ² E[Y]²
… = a ² (E[X ²] - E[X]²) + 2ab (E[XY] - E[X] E[Y]) + b ² (E[Y ²] - E[Y]²)
… = a ² Var[X] + 2ab Cov[X, Y] + b ² Var[Y]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.