Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
[tex]b_i = -0.020125[/tex]
Step-by-step explanation:
Given
[tex]\sum x_i= 2000[/tex]
[tex]\sum y_i= 86.6[/tex]
[tex]\sum x_i^2= 216000[/tex]
[tex]\sum x_iy_i = 8338[/tex]
[tex]n = 20[/tex]
Required
Determine the slope (b) of the regression line
This is calculated as:
[tex]b_i = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}[/tex]
Substitute values for each term, we have:
[tex]b_i = \frac{8338 - \frac{2000 * 86.6}{20}}{216000 - \frac{(2000)^2}{20}}[/tex]
Simplify the numerator
[tex]b_i = \frac{8338 - 8660}{216000 - \frac{(2000)^2}{20}}[/tex]
Simplify the denominator
[tex]b_i = \frac{8338 - 8660}{216000 - 200000}[/tex]
[tex]b_i = \frac{-322}{16000}[/tex]
[tex]b_i = -0.020125[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.