Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

A population has a mean of 180 and a standard deviation of 24. A sample of 100 observations will be taken. The probability that the mean from that sample will be between 183 and 186 is _____.

Sagot :

Answer:

The probability that the mean from that sample will be between 183 and 186 is 0.0994 = 9.94%.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

A population has a mean of 180 and a standard deviation of 24.

This means that [tex]\mu = 180, \sigma = 24[/tex]

A sample of 100 observations will be taken.

This means that [tex]n = 100, s = \frac{24}{\sqrt{100}} = 2.4[/tex]

The probability that the mean from that sample will be between 183 and 186 is:

This is the pvalue of Z when X = 186 subtracted by the pvalue of Z when X = 183. So

X = 186

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{186 - 180}{2.4}[/tex]

[tex]Z = 2.5[/tex]

[tex]Z = 2.5[/tex] has a pvalue of 0.9938

X = 183

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{183 - 180}{2.4}[/tex]

[tex]Z = 1.25[/tex]

[tex]Z = 1.25[/tex] has a pvalue of 0.8944

0.9938 - 0.8944 = 0.0994

The probability that the mean from that sample will be between 183 and 186 is 0.0994 = 9.94%.

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.