Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

how to find the following on this tangent equation

How To Find The Following On This Tangent Equation class=

Sagot :

Answer:

17y

Step-by-step explanation:

since the distance of the the two DE and CE is equal to the radius you can compare the two triangles BDE and CDE. since they have two equal sides and one shared side their third side must be equal as well leaving you with DE = CE
15y - 50 = 17y - 62
62 -50 = 17y - 15y
12 = 2y
6 = y
Knowing that y=6 you can conclude that DE=CE=40mm
Since BD and ED create a right angle (sane as CB and CD) you can use the pythagorean theorem to calculate BE
BE^2= CE^2+CB^2
BE^2 = 30^2 + 40^2
BE^2 = 2500
BE = 50mm
im not sure about the last question sorry
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.