Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
As the calculated F lies in the acceptance region therefore we conclude that there is not sufficient evidence to support the claim that the variability in concentration may differ for the two companies. Hence Ha is rejected and H0 is accepted.
Step-by-step explanation:
As we suspect the variability of concentration F - test is applied.
n1=10 s1=4.7
n2=16 s2=5.8
And α = 0.05.
The null and alternate hypothesis are
H0: σ₁²=σ₂² Ha: σ₁²≠σ₂²
The null hypothesis is the variability in concentration does not differ for the two companies.
against the claim
the variability in concentration may differ for the two companies
The critical region F∝(υ1,υ2) = F(0.025)9,15= 3.12
and 1/F∝(υ1,υ2) = 1/3.77= 0.26533
where υ1= n1-1= 10-1= 9 and υ2= n2-1= 16-1= 15
Test Statistic
F = s₁²/s₂²
F= 4.7²/5.8²=0.6566
Conclusion :
As the calculated F lies in the acceptance region therefore we conclude that there is not sufficient evidence to support the claim that the variability in concentration may differ for the two companies. Hence Ha is rejected and H0 is accepted.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.