Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
K_f = 1881.6 J
Explanation:
To solve this exercise, let's start by finding the velocities of the bodies.
We define a system formed by the initial object and its parts, with this the forces during the explosion are internal and the moment is conserved
initial instant. Before the explosion
p₀ = M v₀
final instant. After the explosion
p_f = m₁ v + m₂ 0
the moeoto is preserved
p₀ = p_f
M v₀ = m₁ v
v = [tex]\frac{m_1}{M}[/tex] v₀
in the exercise they indicate that the most massive part has twice the other part
M = m₁ + m₂
M = 2m₂ + m₂ = 3 m₂
m₂ = M / 3
so the most massive part is worth
m₁ = 2 M / 3
we substitute
v = ⅔ v₀
with the speed of each element we can look for the kinetic energy
initial
K₀ = ½ M v₀²
Final
K_f = ½ m₁ v² + 0
K_f = ½ (⅔ M) (⅔ v₀)²
K_f = [tex]\frac{8}{27}[/tex] (½ M v₀²)
K_f = [tex]\frac{8}{27}[/tex] K₀
the energy added to the system is
ΔK = Kf -K₀
ΔK = (8/27 - 1) K₀
ΔK = -0.7 K₀
K_f = K₀ + ΔK
K_f = K₀ (1 -0.7)
K_f = 0.3 K₀
let's calculate
K_f = 0.3 (½ 64 14²)
K_f = 1881.6 J
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.