Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
30.4 g. NH3
Explanation:
This problem tells us that the hydrogen (H2) is the limiting reactant, as there is "an excess of nitrogen." Using stoichiometry (the relationship between the various species of the equation), we can see that for every 3 moles of H2 consumed, 2 moles of NH3 are produced.
But before we can use that relationship to find the number of grams of ammonia produced, we need to convert the given grams of hydrogen into moles:
5.4 g x [1 mol H2/(1.008x2 g.)] = 2.67857 mol H2 (not using significant figures yet; want to be as accurate as possible)
Now, we can use the relationship between H2 and NH3.
2.67857 mol H2 x (2 mol NH3/3 mol H2) = 1.7857 mol NH3
Now, we have the number of moles of ammonia produced, but the answer asks us for grams. Use the molar mass of ammonia to convert.
1.7857 mol NH3 x 17.034 g. NH3/mol NH3 = 30.4 g. NH3 (used a default # of 3 sig figs)
30.6 g of ammonia are produced.
Answer:
given
mass of hydrogen =5.4 gram
mass of NH3=?
we have
3 moles of H2=2 moles of NH3
3×2g of H2=2×(14+3) g of NH3
6 g of H2=34 g of NH3
5.4 g of H2=34×5.4/6=30.6 g of NH3

Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.