Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
The electric field will be decreased by 29%
Explanation:
The distance between point P from the distance z = 2.0 R
Inner radius = R/2
Outer raidus = R
Thus;
The electrical field due to disk is:
[tex]\hat {K_a} = \dfrac{\sigma}{2 \varepsilon _o} \Big( 1 - \dfrac{z}{\sqrt{z^2+R_i^2}} \Big)[/tex])
[tex]\implies \dfrac{\sigma}{2 \vaepsilon _o} \Big ( 1 - \dfrac{2.0 \ R}{\sqrt{ (2.0\ R)^2+(R)^2}} \Big)[/tex]
Similarly;
[tex]\hat {K_b} = \hat {k_a} - \dfrac{\sigma}{2 \varepsilon_o} \Big( 1 - \dfrac{2.0 \ R}{\sqrt{(2.0 \ r)^2 + (\dfrac{R}{2}^2)}}\Big)[/tex]
However; the relative difference is: [tex]\dfrac{\hat {k_a} - \hat {k_b}}{\hat {k_a} }= \dfrac{E_a -E_a + \dfrac{\sigma}{2 \varepsilon_o \Big[1 - \dfrac{2.0 \ R}{\sqrt{(2.0 \ R)^2 + (\dfrac{R}{2})^2}} \Big] } } { \dfrac{\sigma}{2 \varepsilon_o \Big [ 1 - \dfrac{2.0 \ R}{\sqrt{ (2.0 \ R)^2 + (R)^2}} \Big] }}[/tex]
[tex]\dfrac{\hat {k_a} - \hat {k_b}}{\hat {k_a} }= \dfrac{1 - \dfrac{2.0}{\sqrt{(2.0)^2 + \dfrac{1}{4}}} }{1 - \dfrac{2.0 }{\sqrt{(2.0)^2 + 1}}}[/tex]
[tex]= 0.2828 \\ \\ \mathbf{\simeq 29\%}[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.