Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
Step-by-step explanation:
From the given information:
(i)
The domain includes all runners in a race.
x is "R" y if x beats y
- clearly, x "R" x implies no meaning and sense ⇒ irreflexive
- If x "R" y ⇒ y does not beat x. Thus; asymmetric
- If x "R' y and y "R" Z ⇒ Transitive.
Now, in a race; either x beats y or y beats x
So, x"R"y or y "R" x, but here at least two runners tied.
Thus, the relation is not in total order as x"R"y or y"R"x may not happen.
(j)
S = {a,b,c,d}
The domain = Power set of S
x"R"y if |X| ≤ |Y|
- clearly |X| ≤ |X| ⇒ reflexive
- [tex]If \ |X| \le |Y| \ and \ |Y| \le |X|[/tex] ⇒ |X|=|Y| ⇒ Antisymmetric
- [tex]If |X| \ \le \ |Y| \ and \ |Y| \ \le \ |Z|[/tex] ⇒ |X| ≤ |Z| ⇒ Transitive
Thus, the relation is a partial order.
(k)
S = {a,b,c,d}
The domain = Power set of S
x"R"y if |X| ≤ |Y|
- clearly |X| < |X| ⇒ Irreflexive
- [tex]\text{If } |X| < |Y| \ and \ |Y| < |X|} \implies Antisymmetric[/tex]
- [tex]|X| < |Y| \ and \ |Y| < |Z| \implies |X| < |Z|[/tex] ⇒ Transitive
- Thus, the relation is of strict order but not of the total order.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.