Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
9514 1404 393
Answer:
x = {-0.5-√1.25, -0.5+√1.25, 2, -0.5+i√0.75, -0.5-i√0.75}
Step-by-step explanation:
I like to use a graphing calculator to find clues as to the roots of higher-degree polynomials. Here, we see that x=2 is the only real rational root. Dividing that out by synthetic division, we see the remaining quartic factor is ...
2x^5 -6x^3 -4x^2 -2x +4 = 0
2(x -2)(x^4 +2x^3 +x^2 -1) = 0
We can recognize that the quartic factor is actually the difference of two squares:
x^4 +2x^3 +x^2 -1 = (x^2 +x)^2 -1 = 0
So it resolves to two quadratic factors.
(x^2 +x +1)(x^2 +x -1) = 0
One will have real roots, as shown by the graph. The other will have complex roots.
x^2 +x + 1/4 = 1 +1/4 . . . . complete the square for the factor with real roots
(x +1/2)^2 = 5/4
x = -1/2 ± √(5/4) . . . . . . irrational real roots
__
x^2 +x = -1 . . . . . . . . . . the quadratic factor with complex roots
(x +1/2)^2 = -1 +1/4 . . . complete the square
x = -1/2 ± i√(3/4) . . . . irrational complex roots
__
In summary, the values of x that satisfy the equation are ...
x = 2
x = -1/2 ± √(5/4)
x = -1/2 ± i√(3/4)

Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.