Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

what is the measure of the base angle,x, of the isosceles triangle shown below? round your answer to the nearest tenth of a degree.​

What Is The Measure Of The Base Anglex Of The Isosceles Triangle Shown Below Round Your Answer To The Nearest Tenth Of A Degree class=

Sagot :

Answer:

x ≈ 49.7°

Step-by-step explanation:

Since, the given triangle is an isosceles triangle,

Two sides having measure 17 units are equal.

Opposite angles of these equal sides will be equal.

Measure of the third angle = 180° - (x + x)°

By sine rule,

[tex]\frac{\text{sinx}}{17}=\frac{\text{sin}(180-2x)}{22}[/tex]

[tex]\frac{\text{sinx}}{17}=\frac{\text{sin}(2x)}{22}[/tex] [Since, sin(180 - θ) = sinθ]

[tex]\frac{\text{sinx}}{17}=\frac{2(\text{sin}x)(\text{cos}x)}{22}[/tex]

[tex]\frac{\text{sinx}}{17}=\frac{(\text{sin}x)(\text{cos}x)}{11}[/tex]

[tex]\frac{1}{17}=\frac{(\text{cos}x)}{11}[/tex]

cos(x) = [tex]\frac{11}{17}[/tex]

x = 49.68°

x ≈ 49.7°

Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.