Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
Step-by-step explanation:
From the first image attached below, we will see the sketch of the curve x = y² & x = 2y
In the picture connected underneath, the concealed locale(shaded region) is bounded by the given curves. Now, we discover the marks of the crossing point of the curves. These curves will cross, when:
[tex]y^2 =2 y \\ \\ or y^2 -2y = 0 \\ \\ y(y-2) = 0 \\ \\ y = 0 \ \ or \ \ y = 2[/tex]
Thus, the shaded region fall within the interval 0 ≤ y ≤ 2
Now, from the subsequent picture appended we sketch the solid acquired by turning the concealed region about the y-axis.
For the cross-sectional area of the washer:
[tex]A (y) = \pi (outer \ radius)^2 - \pi ( inner \ radius )^2 \\ \\ A(y) = \pi (2y^)2- \pi (y^)^2 \\ \\ A(y) = 4 \pi y^2 - \pi y^4 \\ \\ A(y) = \pi( 4 y^2 -y^4)[/tex]
Finally, the volume of (solid) is:
[tex]V = \int^2_0 A(y) \ dy \\ \\ V = \int^2_0 \pi (4y^2 -y^4) \ dy \\ \\ V = \pi \int^2_0 (4y^2 -y^4) \ dy \\ \\ V = \pi \Big[\dfrac{4}{3}y^3 - \dfrac{y^5}{5} \big ] ^2_0 \\ \\ V = \pi \Big [ \dfrac{4}{3}(2)^3-\dfrac{2^3}{5} \Big ] \\ \\ V = \dfrac{64}{15}\pi \\ \\ V = (4.27 ) \pi[/tex]


Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.